Photosensitizer-Embedded Polyacrylonitrile Nanofibers as Antimicrobial Non-Woven Textile
نویسندگان
چکیده
Toward the objective of developing platform technologies for anti-infective materials based upon photodynamic inactivation, we employed electrospinning to prepare a non-woven textile comprised of polyacrylonitrile nanofibers embedded with a porphyrin-based cationic photosensitizer; termed PAN-Por(+). Photosensitizer loading was determined to be 34.8 nmol/mg material; with thermostability to 300 °C. Antibacterial efficacy was evaluated against four bacteria belonging to the ESKAPE family of pathogens (Staphylococcus aureus; vancomycin-resistant Enterococcus faecium; Acinetobacter baumannii; and Klebsiella pneumonia), as well as Escherichia coli. Our results demonstrated broad photodynamic inactivation of all bacterial strains studied upon illumination (30 min; 65 ± 5 mW/cm²; 400-700 nm) by a minimum of 99.9996+% (5.8 log units) regardless of taxonomic classification. PAN-Por(+) also inactivated human adenovirus-5 (~99.8% reduction in PFU/mL) and vesicular stomatitis virus (>7 log units reduction in PFU/mL). When compared to cellulose-based materials employing this same photosensitizer; the higher levels of photodynamic inactivation achieved here with PAN-Por(+) are likely due to the combined effects of higher photosensitizer loading and a greater surface area imparted by the use of nanofibers. These results demonstrate the potential of photosensitizer-embedded polyacrylonitrile nanofibers to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.
منابع مشابه
Removal of Reactive Dyes from Wastewater using Cyclodextrin Functionalized Polyacrylonitrile Nanofibrous Membranes
Electrospinning of nanofibers with cyclodextrin (CD) is attractive because the produced fibers can potentially increase the efficiency of nanofibrous membranes by facilitating the complex formation with organic compounds and high surface area of the nanofibers. In this work, polyacrylonitrile (PAN) nanofibers functionalized with β– cyclodextrin (βCD) during an electrospinning process were used ...
متن کاملElectrospinning Fabrication and Performance Evaluation of Polyacrylonitrile Nanofiber for Air Filter Applications
Nano materials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications since air filtration is necessary to protect sensitive components from harmful particulates and gaseous contaminants. The electrospinning method has been recognized as an efficient technique for fabricating polymer nano...
متن کاملComparing Two Electrospinning Methods in Producing Polyacrylonitrile Nanofibrous Tubular Structures with Enhanced Properties
Polyacrylonitrile nanofibrous tubular structures were produced through typical and opposite charge electrospinning methods and the effect of the method as well as the two key electrospinning parameters, namely concentration of the electrospinning polymer solution and rotational speed of mandrel collector on properties of such tubular structures were studied. The smples were characterized by...
متن کاملVirucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen
Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O(2)((1)Δ(g)), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyom...
متن کاملPolyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process
BACKGROUND The objective of this investigation was to develop a new class of antibacterial material in the form of nanofibers coated with silver nanoparticles (AgNPs) using a modified coaxial electrospinning approach. Through manipulation of the distribution on the surface of nanofibers, the antibacterial effect of Ag can be improved substantially. METHODS Using polyacrylonitrile (PAN) as the...
متن کامل